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ON A METHOD OF SYNTHESIS OF NETWORKSa 
by 0. B. Lupanov 

Translated by S. W. Golomb 

/ o  0 9 0  
A description of a certain general method for the 

synthesis of networks - for example, contact networks, 
contact parallel-series net works, and n e t  works of function al 

elements -is given, and t h e  previously known estimates 
of the complexity of these networks are improved upon. 

A clrfle 

One of the problems of cyberne t ics  [translator’s note: U. S. usage  = e lec t ron ic s ]  i s  the  problem of 

cons t ruc t ing  networks which r ea l i ze  prescr ibed  functions out of comparatively s imple  e lements .  This might 

be, for example,  the  s y n t h e s i s  of e lec t ronic  networks ou t  of s t anda rd  blocks,  or re lay  con tac t  networks ou t  of 

s tandard  re lays ,  e tc .  In doing this ,  one  generally attempts to  cons t ruc t ,  in one  s e n s e  or another,  t h e  optimum 

networks.  

In many c a s e s ,  there a r e  tr ivial  procedures for finding s u c h  extrema1 networks; however, they a re  not  

e f fec t ive  enough in  the  s e n s e  tha t  they  i n v o l v e  very ex tens ive  computations,  and ,  moreover, give no  advance  

indication of the  complexity of t he  network which will be obtained. Consequent ly ,  the question a r i s e s  of d i s -  

covering a more e f fec t ive  method for constructing sufficiently good networks with e s t ima tes  [bounds]  on the 

complexity . 

1’ 

JI,, ... , Rn, ... of co l lec t ions  o f  ob jec t s  (in our case ,  J I n  i s  the  co l lec t ion  of a l l  a lgebra ic  log ic  func t ions  of 

-q arguments),  can  be introduced in the  following manner. L e t  each  network S under cons idera t ion  be p laced  

in  comespondence  with the  real  number L (s) - the “index of s impl ic i ty”  (requiring tha t  t he  index  of 

A function for es t imat ing  the  complexity of networks,  eva lua t ing  o b j e c t s  from some sequence  Jr = Jr 

a Sections 2 and 3 have not been translated here. 
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simplicity charac te r ize  the  complexity of the  network). We examine the  following function: L ( f )  = inf L (s) 
(where inf i s  t aken  over  a l l  networks s which realize t h e  function f ); and L (n) = s u p  L ( f ) ?  

f€J ( ,  
T h e  problem of network s y n t h e s i s  with es t imates  h a s  been inves t iga ted  by numerous au tho r s  [l, 5, 

7, 8, 9,  10, 12, 14, 16, 20 et alJ. Here  i t  i s  intended t o  d i rec t  a t ten t ion  t o  one  universa l  method*' for th ree  

c a s e s :  in  5 2 ,  for the s y n t h e s i s  of contac t  networks ( the  previously known upper e s t ima te  [20]  i s  reduced  

twofold); in  5 3, for the  s y n t h e s i s  of  contract  n -networks ( the  previously known upper e s t ima te  is subs t an -  

t ia l ly  lowered): in 5 6 . f o r  the  s y n t h e s i s  of networks out of functional elements:  t h i s  problem for one par t icu lar  

c a s e  i s  reso lved  with some s igni f icant  f ina l i ty*3  (the definit ion of such  networks i s  given in  54). 

* I The function L (7  ) was introduced by C. E. Shannon [ZO]  for estimating the number of contacts in a contact 

*'This method was previously applied by the author to the synthesis of diode and contact-diode networks [3]. 

*3Here an asymptotic formula for L (7) i s  obtained, whereas in the work of D. 0. Muller [l6] there are upper 

network. 

and lower bounds for this function. For details concerning formulation of the problem, see 5 4 .  
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1. THE "PROPER REPRESENTATION" OF THE FUNCTIONS OF ALGEBRAIC LOGIC 

Every function of a lgebra ic  log ic  f c a n  be exhibited by a table with binary en t r i e s  ( c f .  T a b l e  1). 

Table 

0 0; 1 . k + l  

Qi 1 
n 

I 

X. . ' k + l  

xi 

In  t h i s  paragraph, t he  number k and the  arguments xi , ... , x .  ; x. 

regarded as fixed. The matrix defining the  meaning of the function f will be denoted by M ( f ) .  

, , xi  l i s t e d  in the  T a b l e  wi l l  be 
1 ' k  ' k + l  n 

We d i s soc ia t e  t he  rows  of the  matrix M ( f )  into groups A , ,  , A P  ( c f .  Tab le  1). We denote  by 

I 
h ( r l ,  .*. , xn) the  function which co inc ides  with /(xl, 

0 in the  remaining cases .*4  Thus ,  

, xn)  for the rows  of group A .  in M ( f )  and  e q u a l s  

*4We will say in this  case that the function I. is restricted to the arguments xi , , x .  . 
I 1 ' k  
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L e t  u s  cons ider  the  matrix M ( f . ) .  Its columns a r e  d i s soc ia t ed  into groups  equal ly  among i t s  own 
I 

columns [ l e t  the number of groups be  equal  to t ( j ) ] :  we will enumerate t h e s e  groups. The function f .  can  be 

represented  in  the  form 
I 

f . =  I f jh’  
k = l  

where f 

tha t  

co inc ides  with f .  in the  icth group of columns and  equa i s  0 in t h e  remaining c a s e s .  I t  i s  apparent  
j h  I 

where*’ 

U. U. 
‘ k  

x i k  

[regarded d is junc t ive ly  on the collection X(’) of s e t s  (ui , 

of the  matrix M ( f .  )]; 

ai )’ which correspond to the  non-zero rows  
Ih  1 k 

l h  

(2)  

j h  k + 1  n 
[regarded d is junc t ive ly  on the co l lec t ion  X 
columns of t h e  matrix M ( f .  )I. 

of s e t s  (ai , .-. ai ), which correspond to the  non-zero 

l h  

T h u s ,  

* ’ x u  will  denote I: if  cr = 1 ,  and ;if u = 0. 

4 
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The representation (1.1) will be called a proper representation of the function f, if the groups 

A , ,  ... , A have an equal number s of rows (although they could be, for one thing, contained in a smaller 

number of rows). The numbers k and s will be termed the parameters of this representation. 
P 
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4. NETWORKS OF FUNCTIONAL ELEMENTS 

We will  examine the  networks 121 constructed from functional elements*6, that  i s ,  elementary sub- 

networks [2], having  any number of input terminals and  one  output  terminal; every function i s  r ea l i zed  out  of 

elementary subnetworks  from the  arguments,  t he  collection of which equa l s  t he  co l lec t ion  of input  te rmina ls  

of t h e s e  subnetworks (F ig .  6)*’. We will give a definition of t h e  not ions  of networks, vert ices ,  and input and 

output terminal ne tworks. 

I 2  S 

F i g .  6 

DEFINITION** (by induction) 

1. Funct iona l  e lements  will be networks; the  corresponding input-terminal and  output-terminal 

functional e lements  appear  a t  their input te rmina ls  and  output terminals;  the  co l lec t ion  of 

their  ve r t i ce s  co inc ides  with the co l lec t ion  of a l l  the  terminals.  

2. I f  S ‘ a n d  S ” a r e  networks without common ver t ices ,  their  union is a network; the  co l lec t ion  

of i t s  ver t ices ,  input,  and  o u t p t  terminals,  i s  derived by jo in ing  (se t - theore t ica l ly)  t he  

corresponding co l l ec t ions  of networks S ‘  and  S ”  (cf. Fig .  7a).  

3. If S i s  a network, the  r e su l t  of identifying (“fusing”) some inputs  of a terminal i s  l i kewise  

a network (S’). T h e  collection of ver t ices ,  input, and  output  terminals of the  network S ’  

*61n some cases  we will drop the word “functional.” 

*7 The number of input terminals of the functional elements can be equal to zero; in that case,  one realizes 
functions of 0 arguments, i . e . ,  constants. 

**This definition appears for the special case of defining networks, given in [2]. With modifications, i t  
approximates the definition of logical s e t s ,  introduced by Burks and Wright [ 131. 
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Fig .  7 

essen t i a l ly  corresponds t o  the co l lec t ion  of ve r t i ce s  and  te rmina ls  of the  network S, if 

one d o e s  not d i s t inguish  ver t ices  identified in the formation of the  network S ' ( F i g .  7b). 

4. If S ' a n d  S"  are networks without common ver t ices ,  with the  corresponding co l l ec t ions  of 

input and output terminals being M i ,  M i  and hi;', M i ,  the  r e s u l t  of pa i rwise  identification 

of some co1:ection II ' i(dist inct  in pairs)  of output te rmina ls  of the network S ' w i t h  some 

collection N "  (including as many e l emen t s  aga in  as in N i )  of similarly pa i rwise-d is t inc t  1 
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I 
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8 

input terminals of the network S"  wi l l  a l s o  be  a network (3. T h e  co l lec t ion  of i t s  input  

terminals wi l l  be the set Mi u ( M i \ N i ) ;  t he  co l lec t ion  of i t s  ou tput  te rmina ls  will  be 

MiUM; ' .  The collection of ver t ices  of the  network S co inc ides  with the co l lec t ion  of 

ve r t i ce s  of the  networks S ' a n d  S"if one d o e s  not d i s t inguish  ve r t i ce s  identified in the  

formation of the network S (cf .  Fig .  7c). 

5.  If S is a network, the re su l t  of des igna t ing  as output te rmina ls  some  subcol lec t ion  of the 

col lec t ion  of output te rmina ls  of t h e  network S wil l  a l s o  be a network ( S ' ) .  T h e  co l lec t ion  

of ve r t i ce s  and  input terminals of the network S ' co inc ides  with the  corresponding 

co l lec t ion  of the network S (cf. F ig .  7d). 

We will  say tha t  the  network S r ep resen t s  a network of the co l lec t ion  { E )  of functional 

e lements ,  if a l l  functional elements of t he  scheme  S belong to the  co l lec t ion  { E ) .  

L e t  a network have  n input terminals a l ,  , an. We a s s o c i a t e  with t h e s e  the  corresponding argu- 

ments  xl, e-. , x n .  T h e  function rea l ized  by the  network i s  ca l cu la t ed  by the following r u l e s  (we def ine  the 

designation of a function from the  s e t  b1, -.. , cn) of des igna t ions  of the  arguments): 

1. T o  t h e  input terminals of the network, a l ,  e-. , an, we asc r ibe  t h e  corresponding des ig-  

na t ions  ,cl, , ,on. 

2. If the  des igna t ions  t l ,  , ts  are already a sc r ibed  ( in  order  of the number of their  input  

terminals),  i t s  output terminal i s  des igna ted ' fE( t l ,  ... , t s ) ,  where f E  i s  the  function 

r ea l i zed  by the  functional element E .  

From the  definit ion of  networks i t  follows tha t  every vertex of the  network will be a sc r ibed  some 

des igna t ion ,  and moreover uniquely. T h e  designation ascr ibed  t o  the vertex C appea r s  by definition in tha t  

of the  function F , ( x l ,  

which cor responds  to  the  output terminal of t h e  network under consideration. 

, xn)  from the  s e t  (,ol, , on). By means  of t h i s  function, we will exhib i t  t ha t  

L e t  each  functional e lement  E be ascr ibed  a non-negative real  number P ( E )  - i t s  weight. T h e  index 

o f  simplici ty  L (S) of the network S i s  defined as the sum of the weights of all the  functional e lements  in S. 

The reduced weight p ( E )  of the  functional e lement  E ,  for func t ions  which e s sen t i a l ly  depend on 

s 4  2 arguments,  will be descr ibed  as the  number P ( E ) / ( s - l ) .  

8 
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The aim of  the  following paragraph i s  the description of a method of s y n t h e s i s  of a suf f ic ien t ly  

economical ( in the  s e n s e  ind ica ted  by a higher index of s impl ic i ty)  network for the  rea l iza t ion  of func t ions  of 

a lgebra ic  logic.  T h e  co l lec t ion  { E )  o f  elementary functions,  for which the  networks a r e  cons t ruc ted ,  wi l l  be 

assumed to be complete; i .e. ,  i t  will be assumed that ne tworks  from { E )  can r ea l i ze  arbitrary func t ions  of  

a lgebra ic  logic.  

Le: L (3 be :he set cf zumbers s ~ c h  that networks with index nf simplicity not e x c e e d i n g  I, (n) c a n  

r ea l i ze  arbitrary func t i cns  of a lgebra ic  log ic  with n arguments.  

Theorem 4. If { E )  i s  f ini te  with al l  P (E)  pos i t ive ,  then*9 

there  be ing  for arbitrary E > 0 and n > n ( E )  an allotted function f of the  n arguments xl, 

L ( f )  < (1 - E) L ( n ) ,  tending to zero with increasing n. 

, xn, for which 

T h e  proof of t he  theorem breaks  down into three  par t s .  In Q 5, a n  auxiliary a s se r t ion  will be proved, 

u t i l i zed  in the  descr ip t ion  of the  method of synthes is .  In Q 6, the  method of s y n t h e s i s  i s  descr ibed ,  and  a 

bound from above  i s  obtained. In Q 7, the  lower bound i s  proved. 

*9 We recall that the function p ( E )  is defined only for functions real izable  from functional e lements ,  e s s e n t i a l l y  

depending on more than o n e  variable. 
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5. LEMMA 

We introduce some notation. E s t a b l i s h ,  between s e t s  (ol, , 'oU) of ze ros  and  o n e s  of  length  u, and  

the  whole numbers q, 0 5 q < 2", determined subsequent ly ,  the (reciprocally single-valued) correspondence: 

T h e  number q cor responds  t o  the  s e t  which exhibits the  binary d ig i t s  of the  number q ;  t ha t  i s ,  

The number q corresponding to  the  set  (ol, --. , ou) will  be  des igna ted  q(U1,  02, .-. , ,cU), while the  s e t  

corresponding to  the  number q will be des igna ted  (ol ( q ) ,  , on (4)). 

Lemma. L e t  the  function F(x , ,  .-- , x N - ' ) ,  N 1  2", e s s e n t i a l l y  depend on a l l  N arguments.  Then ,  

the  func t ions  $'(yl, 

e x i s t  s u c h  tha t  an arbitrary function of a lgebra ic  logic f ( y l ,  ... , y,, zl, 

, y,, z ) ,  0 I i < 2", and (in the  c a s e  tha t  N > 2") x , ( y l ,  - - a  , y,), 2" L i < N, also 

, z k )  can  be represented  in the  

form* 

Proof. Since  the function F depends  essent ia l ly  on a l l  i t s  arguments,  then for every j ,  0 j < 2", 

there  e x i s t  cons t an t s  C .  ., 0 I i < N, such  that*" 
1 2 8  

We examine the  functions $Ji and X i ,  defined i n  the following manner: 

* lOThe  formula (5.1) represents  i t s  own generalization 
y'' ... 1 y,. 

* l lHere  the sign fB denotes addition modulo 2. 

10 

i f j b i ,  
(0 I i .< 2"), (5.3) 

if j = i ,  

to the decomposi t ion  of func t ions  on the arguments 



(5.4) 

T h e s e  functions sa t i s fy  the s t a t e d  lemma. In the  same way, we examine the  arbitrary s e t  

, 9). I t  exhib i t s  the binary d ig i t s  of the  number J’ = q (clr (u1, 

(5.4) we have 

, urn), 0 5  j < 2’. From (5.2), (5.31, and  

The lemma i s  proved. 

Remark. I t  i s  ev ident  tha t  each  of the functions $i can  be represented  in the  form 

- 
$bi(Y1’ , y,, z)  = Z$biO0fl7 ..* , y,) v z $ i l ( y l ’  * * .  1 y,)* 

where $io and $il a re  some func t ions  of the arguments y l ,  , y,. 

11 
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6 .  THE METHOD OF SYNTHESIS AND THE UPPER BOUND 

L e t  u s  cons ider  an arbitrary function of algebraic log ic  f o f  n arguments. I t  can  be represented  in the 

form 

where the  func t ions  f .  a re  re la t ive  to  the  K arguments 
P 

f = v fi, i t  h a s  the parameters  k and s. 

j = 1  

, xn (cf. § 1); in the  proper representa t ion  I 

L e t  the elementary subnetwork E ,  with minimal reduced weight p (Eo)  r ea l i ze  the  function 4, and l e t  

+ essen t i a l ly  depend on r + 1 1  2 arguments. We examine the  function 

where v is t he  minimum number such  tha t  2' - 1 5 ur < 2' - 1 + r, while u s a t i s f i e s  t he  condition u I n - t.*12 

T h e  function F clearly depends  e s sen t i a l ly  on al l  i t s  arguments.  

On the  b a s i s  of t he  lemma of 8 5, each  of the func t ions  f.(al, , .ot, -.. , xn) can  b e  repre- I 
s e n t e d  in the  form 

(6.3) 

* l 2  From here i t  follows that 

2' 
v <  - + ] 

r 
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A s  already indica ted ,  we suppose  that  the collection {E)  of elementary func t ions  i s  complete.  

Therefore,  there e x i s t  ne tworks  T , ,  T2, T3, realizing the corresponding func t ions  F l ( x )  = Z, F 2 ( x ,  y) = xy,  

F 3 ( z ,  y) = x V y ; the  f i r s t  of t h e s e  ne tworks  has one input and  one  output; e a c h  of the  remaining two h a s  two 

inputs  and  one  output. Let the i n d i c e s  of simplicity of these ne tworks  equal ,  respec t ive ly ,  I , ,  I,, I,. W e  wil l  

ut i l ize  these  networks in  the  p rocess  of s y n t h e s i s  in the  capac i ty  of “s tandard  blocks.” We wi l l  a l s o  employ 

the “ s tada rd  b!nck” T realizing the  fiunction F(y-? ... Y (with index  of s impl ic i ty  I ,  = VP ( E , )  ): l 3  4 V 2 v r .  

The network S for the  function f we will construct from spec i f i c  la rge  blocks.  E a c h  of these will  b e  

cons t ruc ted  from s tandard  blocks.  T h e  lower reduction desc r ibes  these large blocks.  T h e  inputs  of each of 

them e i ther  jo in  to the  previously descr ibed  blocks, or appear  as inputs  of the networks (in s u c c e e d i n g  c a s e s  

i t  will be  decreed  that the arguments are p laced  in correspondence with them). 

DESCRIPTION OF THE NETWORKS (combination of b locks  schemat ica l ly  portrayed in F i g .  8). 

F ig .  8 

* 1 3 A s  will be seen  from what follows, the networks will consist almost entirely of function elements with 
minimal reduced weight. 

13 



I. Block  A rea l i zes  all func t ions  {.(,al, e.. , xt+”+,, .-. , x,). It has k = n - t - u inputs,  
I 

corresponding t o  the  arguments x ~ + ” + ~ ,  -.- , x, and constructed of t he  s t anda rd  b locks  T,, T,, T3. 

1) T o  begin with, the func t ions  Fi(t + u + 1 I i I n) are rea l ized;  for them, k s tandard  b l o c k s  

TI  are  required. The index  of simplicity of t h i s  par t  of the  network e q u a l s  k l , .  

u u 
2) Next,  a l l  conjunct ions  x,::”,’ , x_ a re  rea l ized .  For the  rea l iza t ion  of each  of them 

(proceeding from the  func t ions  x i  and TJ,  k - 1 standard  b locks  T,  a re  required; for t he  

rea l iza t ion  of all the  conjunctions,  ( k  - 1) 2h s tandard  b locks  T, a r e  required. T h e  index  

o f  simplicity of t h i s  part  of the network equa l s  (k - 1) 2k 1,. 

3) Fina l ly ,  we r e a l i z e  a l l  functions {.(al, e - .  , ,ut+”, xt+”+,, .-. , 2,) (not  more than 
I 

p 2 ‘ 5  ( 
rea l ized  as  the  disjunction of appropriate conjunct ions ;  for them, no t  more than s s t anda rd  

b locks  T3 are required. “Identically zero” can  be r ea l i zed ,  for example,  a s  x, * xn ; for 

i t ,  one  s tandard  block To i s  needed. T h e  index of simplicity for t h i s  par t  of the network 

+ 1) 2‘ such) .  Every function, excep t  for “ ident ica l ly  zero,’’ i s  

- 

does  not exceed  s (:L+ 1) 2‘13 + 1,. 

In th i s  manner, t he  index  of simplicity L (A) of Block A s a t i s f i e s  the  re la t ion  

L ( A )  I k l ,  + k 2 k l ,  + s - + 1 2‘13. (:“ 1 (6.4) 

u u 
11. Block B rea l i zes  a l l  conjunctions xt;;’ it::. I t  has u inputs ,  corresponding to the arguments 

, xt+”, and 2” au tputs ,  and i s  moreover arranged as is the corresponding part of Block A. I t s  index of x ~ + ~ ,  

s impl ic i ty  L (B) evidently s a t i s f i e s  the  relation 

L ( B )  5 u 1 ,  + u 2’1,. (6 .5 )  

u 
111. Block C rea l i zes  a l l  conjunct ions  x y  ... x t  ‘. It  h a s  t inputs  corresponding to the  arguments 

, xt, and 2t outputs,  and i s  moreover arranged as i s  Block B. I t s  index  of simplicity L (C) s a t i s f i e s  xl, 

the  re la t ion  

(6.6) 



IV. Block D r e a l i z e s  a l l  func t ions  $ J i ( x t + l ,  .-- , xttU, 4 b l ,  , ut+”, z t+u+l ,  , x,)) and 

xi ( x t  

A. 

... , x t+ , ) .  T h e  inputs  to these  b locks  are the  outputs  of Block B and  some of t h e  ou tpu t s  of Block  

1) For the  rea l iza t ion  of every function xi ( a s  a disjunction of su i t ab le  conjunctions) no t  

more than 2” s tandard  b locks  T, are required.  T h e  number of func t ions  Xi does not  

exceed  r ( c f .  the  previous page). ‘ l’herefore the  index of simpiicity of t h i s  part of Elock 

D i s  not more than r 2”Z3. 

-. 

2) We have  ( c f  the  remark af ter  the lemma of 0 5) 

For the realization of each  of the func t ions  $io and $Jil from the conjunct ions  

not  more than 2‘ s tandard  b locks  T3 for the  rea l iza t ion  of 

$Ji(xttl, - - -  , x t t U ,  /j(cl, .-- , uttu, x ~ + ” + ~ ,  , x,)) (formed from 

and $Ji1 and the functions rea l ized  by Block A), two s tandard  b locks  T2 and one  e a c h  

of the s tandard  b locks  Tl and T,. T h e  number of func t ions  $i e q u a l s  (!the n I b e r  o f  

d i s t inc t  functions f.(o1, , pktt, xk t t t l ,  , xn) d o e s  not  exceed  - + 1 2‘. 

Therefore the  index  of simplicity for the  par t  of Block D rea l iz ing  a l l  func t ions  

$i (xk t 1 ’  

J 

, % k t t ,  G(al, -.. , aktt, x k t t t l ,  , xn)), d o e s  not exceed  

T h e  index of simplicity L (D) of Block D s a t i s f i e s  t he  re la t ion  

15 
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V. Block G rea l i zes  all the  func t ions  f.(ol, ... , at, x ~ + ~ ,  , x,), formed from the func t ions  
I 

rea l ized  by Block D. For the  rea l iza t ion  of each  of them, one s tandard  block T, i s  required [cf (6.311. 

Therefore 

L ( G )  5 2' (: + 1) 1, . (6.8) 

VI. B!ock F rea!izes the fnnction f, famed frcm the fnxc t ions  rea l ized  by B!ecks C m d  G [cf (6.111. 

-t 1 standard b locks  T2 of each  conjunction 

x;' x t t  h(ol, ... , ot, x ~ + ~ ,  , x,)] and not more than 2' 

2k 
I t  con ta ins  not  more than 2' - 

S 
U 

blocks  T3 (for t he  rea l iza-  

tion of t hese  conjunct ions  of t he  function f ) .  Therefore 

From (6.41, (6.51, (6.6), (6.7), and (6.9) we have  

L '  = L ( A )  + L ( B )  + L ( C )  + L(D) + L(F) 5 N l l ,  + N 2 l 2  + N , l , ,  

(6.9) 

(6.10) 

where 

(6.11) 

We now s e t  

then 

N ,  = k2k + u2' + t2t  + 2 2"" ( - ; + 1 ) + 2c (4 + 1), (6.12) 

N ,  = ~ 2 '  (: + 1) + r 2 " +  2 " t s ( :  + 1) (2"" + 1) + 2 t ( :  + 1). (6.13) 

k = [ 2  log, n], u = [log, n], s = [ n  - 5 l og2  nl; 

t = n - k - u < n - 3 log, n + 2 .  

16 
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We introduce the notation 

2 n 

n - 5 log2 n - 1 
+ 1 = N o .  (6.16) 

From (6.11), (6.121, (6.13), (6.14), (6.15) and (6.16) there follows: 

2" 

n 
N , i n + - m o = O  

4 
(6.17) 

4.2" 2.2n 4. 2" 

3 
N2  I 2 n 2  log2 n + n log2 n + (n - 3 log2 n + 2) - + -  No + - 

n 4 n 3  n 

(6.18) 

No = O  (>) . (6.19) N3 5 ( n  - 5 log2 n )  - No + r n + - ( 2 n  + 1) No + - 2" 2" 4.2" 

2 n n 4 n 5 

From (6.10), (6.17), (6.18), and (6.19) it follows that 

L ' = O  (:) 
From (6.8) and (6.2) we have: 

(6.20) 

2t+k +U 2" 
( l + o ( l ) )  P ( E o )  = P ( E o )  - (1 + o ( l ) ) ,  

rs n 

(6.21) 

P ( E o )  
because t + k + u = n and ~ = p(Eo). It is clear that 

r 

Therefore [cf. (6.20) and (6.21)I 
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7. THE LOWER BOUND 

In the  work of the author [4], a theorem is  proved concerning lower bounds  for the  index  of simplicity 

of ne tworks  of arbitrary e lements .  However,  in our p re sen t  c a s e  we ge t  bounds  from i t  which a re  insuf f ic ien t  

for t he  proof of the  theorem. Therefore,  another  proof i s  given here.  

We ca lcu la t e  the  number of functions of n arguments, x , ,  .-. , xn ,  r ea l i zed  by ne tworks  with index  of 

aiinplicity not exceed ing  L .  

I 
8 
I 
8 
8 
1 
I 
I 

1. We wi l l  cons ider  t r e e s  with roots  [HI,  i . e .  t r ee s  [IS] a t  each  of whose  outputs  there  i s  one  

vertex which i s  t he  root. 

Lemma 1. T h e  number S ( h )  of t r e e s  with roots, having  h r ibs ,  s a t i s f i e s  the re la t ion*14 

Proof. The collection of t r ees  with roots  can inductively be determined in the  following manner: 

a) a rib with one marked vertex i s  a t ree  with a root; b) if A ,  and  A, a r e  t r e e s  (without common ver t ices ) ,  

with corresponding roo t s  a l  a n d  a,, the  r e s u l t  A of identifying the  ve r t i ce s  a, and a, i s  a t r ee  with root 

a, = a, (cf. Fig .  9a); c)  if A i s  a t r ee  with root a, the  r e su l t  A ’ of annexing  to a the rib a b  (where b i s  not a 

ver tex  of A)  i s  a t r ee  with root b (cf. Fig .  9b). 

U 

*14A more precise bound i s  obtained in [ 171 with the help of generating functions. 
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To each  of the  t r ees  with roots  can  be juxtaposed (generally speaking ,  not uniquely) a word from the  

a lphabet  {a, p }  in t he  following manner (in accordance with the inductive s t ruc ture  of t h e s e  t rees) :  a') to  t he  

rib of s t e p  a) ,  j ux tapose  the  word up; b ' )  if t o  the t r ees  A ,  and  A,  of s t e p  b) a r e  jux taposed  the correspond- 

ing  words A ,  and A,, then to  the  tree A is juxtaposed the word A I A , ;  c ' )  if to the  t r ee  A of s t e p  c) i s  

jux taposed  the  word A, then to  the t r ee  A ' cor responds  the  word a A P .  

F o r  example,  to the t ree  of F ig .  10 can  be jux taposed  the  word 

In i t  appear  t he  subwords  A ,  and A,, corresponding to  the s u b t r e e s  A ,  and A,. 

// 
I 
I 
I 
\ 
\ 

\ 
\ 

'--/ / 

Fig .  10 

We note  tha t  on the  word A, corresponding to the tree A with root, the l a t t e r  i s  r ees t ab l i shed  uniquely 

(with e x a c t n e s s  up to  isomorphism [IS], root i s  transformed into root). 

T o  a t ree  with h r ib s  corresponds a word of length 2 h .  Therefore,  the number of t r e e s  with roots ,  

having  h r ib s ,  d o e s  not exceed  the  number of words of length 2h from the a lphabet  {a, p 1, i . e .  22h = qh. 

T h e  lemma i s  proved. 

Corollary. T h e  number S(h, n) regulating (i. e. enumerating) s y s t e m s  of n t r e e s  with roots  ( some t r e e s  

can  be vacuous)  having  in aggregate h r ibs ,  s a t i s f i e s  the re la t ion  

S ( h ,  n) L ( h  + n)" qh . 
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In fact ,  the number of ways  of decomposing the  number h into n integral  nonnegat ive  p a r t s  h(’), .-- , 
h(”) ( itl h(’) = h )  e q u a l s  the number of combinations with repeti t ion of h + 1 e lemen t s  by n = 1:15 i . e .  

C”-’ n+h-1 < (n + h)”; every such  decomposition corresponds to  S(h(’)) - S ( h ( 2 ) )  

t r ee s  (here S(0) = 1). 

- ~ ( h ( ” ) )  L 4h s y s t e m s  of 

2. We will now cons ider  oriented graphs  [IS], not conta in ing  or ien ted  c y c l e s  ( i . e .  subgraphs  con- 

v e r ~ i c e b  w i t h  edcli uf ~lieir inc ident  edges 
ik 

I .  
I -  . .  siatiiig of edges ( G .  G .  1, (ai ii. ), ... , \u. a. ), ( a  (Z ” ’’--L---- 

‘1 ‘2 2 ‘3 ‘k-1 ‘k 
oriented in the  direction toward them ( inputs  in  their edges )  will be ca l l ed  the introverted vertices of the  

graph; t he  remaining ve r t i ce s  a re  inputs. T h e  order of an introverted ver tex  i s  what we c a l l  t h e  number of  

inc identa l  e d g e s  which a re  directed toward it. 

Let the graph G have  hs  introverted vertices of order s, 15 s L m, ,where m i s  the maximum of their  

orders.  T h e  s e t  H = (hl ,  h 2 ,  ... , hm) will be  called the  order structure of the graph, and the  number p(H) = 

X sh, /Zh,  i s  t he  average order of the  graph (in other words,  the  average  order i s  t h e  average  a r i thmet ica l  

order of the  introverted vertices).  

We denote  by R (n, H) the  number of nonisornorphic [15]  oriented graphs without oriented c y c l e s  

with n d is t inguishable  ( i .  e. numbered) input vertices,  and  order s t ruc ture  H. 

Lemma 2. 

where 

h = Z h s  

Proof. In every s t a r  of an  introverted vertex of an arbitrary oriented graph without or ien ted  cyc le s ,  

we d is t inguish  a s ing le  input among i t s  edges.  The number of t h e s e  e d g e s  equa l s  h. From the  co l lec t ion  a n  

ordered sys t em of n t r ee s  with roots  i s  formed. Therefore my or ien ted  graph with order s t ruc ture  H with n 

d is t inguishable  input ver t ices  can  be obtained from some ordered sys t em of n t r ees  with roo t s  in the  following 

manner. We des igna te  the  ve r t i ce s  of th i s  sys t em as roots  of a sc r ibed  order: t he  order s i s  a sc r ibed  to h s  

*15That is ,  the number of ways of arranging n -1 “commas” before, after, and between the digits of an h-digit 
number; the number o f  digits between successive “commas” equals the corresponding part; between successive digits 
several “commas” may be inserted- for example the decomposition 7 = 0 + 0 + 1 + 3 + 2 + 0 + 1 + 0 corresponds to the 
arrangement of  “commas”,, 1, 111, l l , , l ,  . These arrangements of “commas” are combinations of “empty spaces” 
before, after, and between the digits of an h-digit number with repetition. 
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ver t i ce s  ( the number of  ways  of  a s s ign ing  the orders e q u a l s  the  number of ways  of decomposing the number 

h = p ( H )  h = shs into corresponding numbers of ordered natural  terms, each of which d o e s  no t  e x c e e d  

rn, i . e .  t h i s  d o e s  not exceed  2h Next,  every vertex of order s connec t s  s - 1 e d g e s  d i r ec t ed  to  i t  with 

some o ther  ver t ices ;  the number of ways  of connecting each  ver tex  d o e s  not exceed  the  number of combina t ions  

with repeti t ion from h + n e l emen t s  by s - 1, i. e. CiJ: + n - 2  ; the number of ways  of connec t ing  all introvert  

ve r t i ce s  d o e s  not exceed* l 7  

m 
z 

s = l  

In genera l ,  the number of graphs with order s t ruc ture  H with n input ve r t i ce s ,  therefore, d o e s  no t  

exceed  (lemma 1) 

T h e  lemma i s  proved. 

3. We replace ,  in the  network of functional e lements ,  e a c h  of the  l a s t  s t a r s  of edges, or ien ted  toward 

the  center  of the  s t a r ,  in  number equal  to the number of input functional e lements  ( the center  of the  s t a r  

cor responds  to  the output terminal of the  functional e lements ,  the  remaining ver t ices ,  to the  input terminals);  

after that  we write under the  center  of each  s t a r  a symbol, denot ing  the  functional e lement  corresponding to  

i t ,  and  i t s  edge  number, corresponding to  the number of representa t ions  by them of inputs  of functional 

e lements  (cf. Fig .  11). T h e  oriented graph obtained by virtue of the definit ion of networks from functional 

e lements  will not be kep t  in cyc l ic  orientation. Obviously, between ordered graphs  (with “numbered through” 

ve r t i ce s  and  edges)  and  elementary networks,  s ing leva luedness  i s  res tored .  

The index of simplicity of a graph is defined a s  the  sum of the weights of the functional e l emen t s  

whose symbols  a re  written down under i t s  ver t ices  (i .e. ,  i t s  index of simplicity e q u a l s  the index of s impl ic i ty  

of the resu l t ing  network). 

* 1 6 1 t  does not exceed the number of ways of  inserting “commas” among the digits of an hl-digit number (cf. 

* l7 For h 5 1, n must always be not l e s s  than 1.  

the preceding footnote), in such a way that between successive digits not more than one comma is inserted. 
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Fig .  11 

4. We introduce some notation. 

I 2 3 4 

Q(n ,  L )  i s  t he  number of func t ions  of a lgebra ic  log ic  in n arguments xl, , xn r ea l i zed  by ne tworks  

of functional e lements  from {E} with index  of simplicity not exceeding  L. Q ' ( n ,  L )  i s  the number of networks 

made of functional e lements  from {E} with index of simplicity which d o e s  no t  exceed  L ,  rea l iz ing  func t ions  

of a lgebra ic  log ic  in n arguments xl, -.- , xn .  Q"(n, L)  i s  t he  number of oriented graphs  with n d i s t inc t  input  

ver t ices ,  not conta in ing  oriented cyc le s ,  and with introverted ve r t i ce s  under which a re  written symbols  for 

t he  functional e lements  of {E}, and e d g e s  under which a re  written in tegers  from 1 to m, having  an index  of 

s impl ic i ty  not  exceed ing  L .  

From what w a s  s a i d  above. i t  follows that 

5. L e t  { E }  cons i s t  of functional e lements  Eii ,  1 I j 5 M i ,  1 I i I n ;  the  e lement  E. .  has i input 
' I  

t e rmina ls  and i t s  weight equa l s  P.. . 
& I  

We des igna te  by h . .  the  number of elements,  E .. in  the  graph G, and  s e t  h = h. .  . We obtain an 
' I  ' I  ' I  

upper bound for some auxiliary function of order structure for a graph, hav ing  index  of s impl ic i ty  

i = l  j = 1  t l  ' I  '= i >  2 ; j  i-1 

P.. M j 
exceeding  L. We def ine*l*  min -2- . T h u s  for arbitrary i and j (2 I i I m ,  

1 I j I M i ) .  i - 1 I - P . . .  Hence  
P ' I  

* l8 W e  recal l  that a l l  Pi are pos i t ive .  
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P P 

rn Mi m Mi 1 
( p ( h ) - l ) h =  Z ( i - 1 )  Z h . . I  I: Z - h . . P . . I  - L .  

j = l  ' I  i = 2  j = 1  ' I  ' I  i = 2  

Moreover, if l7 = min P.. , then 
i , i  ' 1  

(7.2) 

(7 .3)  

6. We will  compute the  number H ( L )  of order s t ruc ture  H for graphs  with index  of s impl ic i ty  not  

exceeding  L .  T h i s  number d o e s  not exceed  the  number of nonnegative in t ege r s  s a t i s fy ing  the inequal i ty  

rn Mi 
Z C hii  P . .  I L ,  

' I  i = l  i = 1  

which d o e s  not  exceed  the  number sa t i s fy ing  the  inequality 

rn Mi 1 

i = l  j ' l  ' I  T 
I: C h . .  5 - L ,  

because  P.. > T .  The  number sa t i s fy ing  the  l a s t  inequality d o e s  not  exceed  the number of w a y s  of decompos- 

ing  the  number [: L ]  into M + 1 ordered nonnegative integral  par ts ,  where  M = I: M i ,  L e .  * 1 9  
rn 

i = l  

&I  - 

T h u s ,  

7 .  I t  i s  c l ea r  tha t  

(7.4) 

*19Cf. footnote 15. 
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From lemma 2, (7 .2 ) ,  (7.3), (7.4) and (7.5) i t  follows tha t  

2" 
An immediate examination can  convince,  as a consequence  of (7 .6) ,  that  for L 5 p - (1 - E )  

n 
[for arbitrary E > 0 and n > n ( E ) ]  

+ 
Q" (n, L )  

22" 

Fina l ly ,  t ak ing  (7.1) into account ,  we obtain a 

0 a s n d m .  

lower bound for L (n), asymptotically equal  t o  the  

upper o n e  produced in Q 6 (because  p i s  the  minimum reduced  weight  for functional e lements ) ,  and  the  s e c o n d  

par t  of Theorem 4 i s  proved. 

Theorem 4 i s  completely proved. 
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